Chinese Goldthread Extract 97% Berberine Hycholoride HPLC,Berberine,Berberine powder
Latin name: Coptis chinensis
Active ingredients: Berberine Hydrochloride
Molecular formula: C20H18ClNO42H2O
Molecular weight: 407.85
CAS Number: 633-65-8
Specification: 97% HPLC
Product properties: Yellow fine powder
Chinese Goldthread Extract 97% Berberine Hydrochloride HPLC
Description:
What is Chinese Goldthread Extract?
Coptis chinensis, the Chinese goldthread, is a species of goldthread native to China. Coptis chinensis is one of the 50 fundamental herbs used in traditional Chinese medicine, the rhizomes of Coptis chinensis are used in Traditional Chinese Medicine and serve as a source for the isoquinoline alkaloids berberine, palmatine, hydrastine, and coptisine among others.
What is Berberine?
Berberine is a quaternary ammonium salt from the protoberberine group of isoquinoline alkaloids. Berberine is usually found in the roots, rhizomes, stems, and bark of coptis.
Berberine is strongly yellow colored, which is why in earlier times Berberis species were used to dye wool, leather and wood. Wool is still today dyed with berberine in northern India. Under ultraviolet light, berberine shows a strong yellow fluorescence, so it is used in histology for staining heparinin mast cells. As a natural dye, berberine has a colour index of 75160.
Function:
Diabetes, dyslipidemias and cardiovascular conditions
During the last few decades, many studies have shown berberine has various beneficial effects on the cardiovascular system and significant anti-inflammatory activities. A Canadian report suggested berberine can effectively reduce intracellular superoxide levels in LPS-stimulated macrophages. Such a restoration of cellular redox by berberine is mediated by its selective inhibition of gp91phox expression and enhancement of SOD activity.
Berberine exerts up-regulating activity on both the low-density-lipoprotein receptor (LDLR) and the insulin receptor (InsR). This one-drug-multiple-target characteristic might be suitable for the treatment of metabolic syndrome.
Lipids
Berberine lowers elevated blood total cholesterol, LDL cholesterol, triglycerides and atherogenic apolipoproteins (apo B) (Apo B), but the mechanism of action is distinct from statins. Berberine reduces LDL cholesterol by upregulating LDLR mRNA expression posttranscriptionally while downregulating the transcription of proprotein convertase subtilisin/kexin type 9 (PCSK9), a natural inhibitor ofLDL receptor (LDLR), and increasing in the liver the expression of LDL receptors through extracellular signal-regulated kinase (ERK) signaling pathway, while statins inhibit cholesterol synthesis in the liver by blocking HMG-CoA-reductase. This explains why berberine does not cause side effects typical to statins. Berberine and plant stanols synergistically inhibit cholesterol absorption in hamsters.
Berberine seems to improve the arterial endothelial function in humans. Berberine activates AMP-activated protein kinase (AMPK), specifically extracellular signal-regulated kinases (ERK), which plays a central role in glucose and lipid metabolism, suppresses proinflammatory cytokines, and reduces MMP-9 and EMMPRIN expression, which are all beneficial changes for heart health.
Cancer
Berberine has drawn extensive attention towards its antineoplastic effects.[63][64] It seems to suppress the growth of a wide variety of tumor cells, including breast cancer, leukemia, melanoma, epidermoid carcinoma, hepatoma, pancreatic cancer, oral carcinoma, tongue carcinoma, glioblastoma, prostate carcinoma and gastric carcinoma. Animal studies have shown that berberine can suppress chemical-induced carcinogenesis, clastogenesis, tumor promotion, tumor invasion, prostate cancer, neuroblastoma, and leukemia.
It is a radiosensitizer of tumor cells, but not of normal cells. How berberine mediates these effects is not fully understood, but its ability to inhibit angiogenesis and to modulate Mcl-1, Bcl-xL, cyclooxygenase (COX)-2, MDR, tumor necrosis factor (TNF)- and IL-6, iNOS, IL-12, intercellular adhesion molecule-1 and ELAM-1 expression, MCP-1 and CINC-1, cyclin D1, activator protein (AP-1), HIF-1, PPAR-, and topoisomerase II has been shown. By using yeast mutants, berberine was found to bind and inhibit stress-induced mitogen-activated protein kinase kinase activation. Because apoptotic, carcinogenic, and inflammatory effects and various gene products (such as TNF-α, IL-6, COX-2, adhesion molecules, cyclin D1, and MDR) modulated by berberine are regulated by the transcription factor nuclear factor- B (NF- B), it is postulated this pathway plays a major role in the action of berberine. Berberine suppressed NF-κB activation induced by various inflammatory agents and carcinogens. This alkaloid also suppressed constitutive NF-κB activation found in certain tumor cells. It seems to protect against side effects of radiation therapy in lung cancer. However, new studies suggest that while berberine decreases cell growth, it increases the side population (stem cell) fraction of H460 lung cancer cells.
Berberine, 300 mg three times a day orally, also seems to inhibit complication of abdominal or pelvic radiation, called radiation-induced acute intestinal symptoms. The studies suggest its use in clinical development may be more as a cytostatic agent than a cytotoxic compound.
Packing Detail:
Packed in 40cm*50cm paper-drums and two plastic-bags inside.
Net Weight:
25kgs/drum.
Storage Situation:
Stored in a well-closed container away from moisture and strong light/heat.
Shelf Life:
Two years under well Storage situation and stored away from direct sun light.